Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(34): 82795-82806, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37336851

ABSTRACT

The Brazil nut shell was used as a precursor material for preparing activated carbon by chemical activation with potassium hydroxide. The obtained material (BNSAC) was characterized, and the adsorptive features of phenol were investigated. The characterization showed that the activated carbon presented several rounded cavities along the surface, with a specific surface area of 332 m2 g-1. Concerning phenol adsorption, it was favored using an adsorbent dosage of 0.75 g L-1 and pH 6. The kinetic investigation revealed that the system approached the equilibrium in around 180 min, and the Elovich model represented the kinetic curves. The Sips model well represented the equilibrium isotherms. In addition, the increase in temperature from 25 to 55 °C favored the phenol adsorption, increasing the maximum adsorption capacity value (qs) from 83 to 99 mg g-1. According to the estimated thermodynamic parameters, the adsorption was spontaneous, favorable, endothermic, and governed by physical interactions. Therefore, the Brazil nut shell proved a good precursor material for preparing efficient activated carbon for phenol removal.


Subject(s)
Bertholletia , Water Pollutants, Chemical , Phenol/chemistry , Charcoal/chemistry , Hydrogen-Ion Concentration , Phenols , Thermodynamics , Adsorption , Water , Kinetics , Water Pollutants, Chemical/analysis , Solutions
2.
Environ Sci Pollut Res Int ; 30(23): 63661-63677, 2023 May.
Article in English | MEDLINE | ID: mdl-37055691

ABSTRACT

Due to its toxicity, the presence of Cu(II) ions released in aquatic environments presents a serious threat to the environment and human health. In search of sustainable and low-cost alternatives, there are citrus fruit residues, which are generated in large quantities by the juice industries and can be used to produce activated carbons. Therefore, the physical route was investigated for producing activated carbons to reuse citrus wastes. In this work, eight activated carbons were developed, varying the precursor (orange peel-OP, mandarine peel-MP, rangpur lime peel-RLP, and sweet lime peel-SLP) and the activating agent (CO2 and H2O) to remove Cu(II) ions of the aqueous medium. Results revealed promising activated carbons with a micro-mesoporous structure, a specific surface area of around 400 m2 g-1, and a pore volume of around 0.25 cm3 g-1. In addition, Cu (II) adsorption was favored at pH 5.5. The kinetic study showed that the equilibrium was reached within 60 min removing about 80% of Cu(II) ions. The Sips model was the most suitable for the equilibrium data, providing maximum adsorption capacities (qmS) values of 69.69, 70.27, 88.04, 67.83 mg g-1 for activated carbons (AC-CO2) from OP, MP, RLP, and SLP, respectively. The thermodynamic behavior showed that the adsorption process of Cu(II) ions was spontaneous, favorable, and endothermic. It was suggested that the mechanism was controlled by surface complexation and Cu2+-π interaction. Desorption was possible with an HCl solution (0.5 mol L-1). From the results obtained in this work, it is possible to infer that citrus residues could be successfully converted into efficient adsorbents to remove Cu(II) ions from aqueous solutions.


Subject(s)
Citrus , Water Pollutants, Chemical , Humans , Charcoal/chemistry , Carbon Dioxide , Adsorption , Oxides , Water , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
3.
Environ Sci Pollut Res Int ; 30(20): 58684-58696, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36997777

ABSTRACT

Sapelli wood sawdust-derived magnetic activated carbon (SWSMAC) was produced by single-step pyrolysis using KOH and NiCl2 as activating and magnetization agents. SWSMAC was characterized by several techniques (SEM/EDS, N2 adsorption/desorption isotherms, FTIR, XRD, VSM, and pHPZC) and applied in the brilliant blue FCF dye adsorption from an aqueous medium. The obtained SWSMAC was a mesoporous material and showed good textural properties. Metallic nanostructured Ni particles were observed. Also, SWSMAC exhibited ferromagnetic properties. In the adsorption experiments, adequate conditions were an adsorbent dosage of 0.75 g L-1 and a solution pH of 4. The adsorption was fast, and the pseudo-second-order demonstrated greater suitability to the kinetic data. The Sips model fitted the equilibrium data well, and the maximum adsorption capacity predicted by this model was 105.88 mg g-1 (at 55 °C). The thermodynamic study revealed that the adsorption was spontaneous, favorable, and endothermic. Besides, the mechanistic elucidation suggested that electrostatic interactions, hydrogen bonding, π-π interactions, and n-π interactions were involved in the brilliant blue FCF dye adsorption onto SWSMAC. In summary, an advanced adsorbent material was developed from waste by single-step pyrolysis, and this material effectively adsorbs brilliant blue FCF dye.


Subject(s)
Charcoal , Water Pollutants, Chemical , Adsorption , Charcoal/chemistry , Wood , Water Pollutants, Chemical/chemistry , Thermodynamics , Kinetics , Magnetic Phenomena , Hydrogen-Ion Concentration , Methylene Blue/chemistry
4.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838808

ABSTRACT

Water pollution by dyes has been a major environmental problem to be tackled, and magnetic adsorbents appear as promising alternatives to solve it. Herein, magnetic activated carbons were prepared by the single-step method from Sapelli wood sawdust, properly characterized, and applied as adsorbents for brilliant blue dye removal. In particular, two magnetic activated carbons, MAC1105 and MAC111, were prepared using the proportion of biomass KOH of 1:1 and varying the proportion of NiCl2 of 0.5 and 1. The characterization results demonstrated that the different proportions of NiCl2 mainly influenced the textural characteristics of the adsorbents. An increase in the surface area from 260.0 to 331.5 m2 g-1 and in the total pore volume from 0.075 to 0.095 cm3 g-1 was observed with the weight ratio of NiCl2. Both adsorbents exhibit ferromagnetic properties and the presence of nanostructured Ni particles. The different properties of the materials influenced the adsorption kinetics and equilibrium of brilliant blue dye. MAC111 showed faster kinetics, reaching the equilibrium in around 10 min, while for MAC1105, it took 60 min for the equilibrium to be reached. In addition, based on the Sips isotherm, the maximum adsorption capacity was 98.12 mg g-1 for MAC111, while for MAC1105, it was 60.73 mg g-1. Furthermore, MAC111 presented the potential to be reused in more adsorption cycles than MAC1105, and the use of the adsorbents in the treatment of a simulated effluent exhibited high effectiveness, with removal efficiencies of up to 90%.


Subject(s)
Charcoal , Water Pollutants, Chemical , Adsorption , Coloring Agents , Magnetic Phenomena , Kinetics , Methylene Blue , Hydrogen-Ion Concentration
5.
Waste Manag ; 152: 17-29, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35964399

ABSTRACT

A route based on pyrolysis and physical activation with H2O and CO2 was proposed to reuse citrus waste traditionally discarded. The citrus wastes were orange peel (OP), mandarine peel (MP), rangpur lime peel (RLP), and sweet lime peel (SLP). The main aim was to use the solid products of this new route as adsorbents for Cu(II) ions. Copper ions are among the most important water pollutants due to their non-degradability, toxicity, and bioaccumulation, facilitating their inclusion and long persistence in the food chain. Besides the solid products, the liquid and gaseous fractions were evaluated for possible applications. Results showed that the citrus waste composition favored the thermochemical treatment. In addition, the following yields were obtained from the pyrolysis process: approximately 30 % wt. of biochar, 40 % wt. of non-condensable gases, and 30 % wt. of bio-oil. The biochars did not present a high specific surface area. Nevertheless, activated carbons with CO2 and H2O presented specific surface areas of 212.4 m2/g and 399.4 m2/g, respectively, and reached Cu(II) adsorption capacities of 28.2 mg g-1 and 27.8 mg g-1. The adsorption kinetic study revealed that the equilibrium was attained at 60 min and the pseudo-second-order model presented a better fit to the experimental data. The main generated gases were CO2, which could be employed as an activating agent for activated carbon production. d-limonene, used for food and medicinal purposes, was the main constituent of the bio-oil.


Subject(s)
Citrus sinensis , Citrus , Water Pollutants, Chemical , Adsorption , Carbon Dioxide , Charcoal/chemistry , Citrus sinensis/chemistry , Ions , Kinetics , Limonene , Pyrolysis
6.
Biomass Convers Biorefin ; : 1-18, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35600741

ABSTRACT

Based on cleaner production and circular economy concepts, chars were produced through thermochemical conversion of grape bagasse and then used as adsorbents to uptake Cu(II) from aqueous media since Cu(II) is a common element found in fungicides to treat grapevines. The grape bagasse and char characteristics were investigated through several analytical techniques (TGA, SEM, XRD, FTIR, and BET). Three chars were obtained using different pyrolysis temperatures: 700, 800, and 900 °C. The materials had similar removal percentages and adsorption capacity. The char produced at 700 °C was chosen due to its lower production cost. Studies were conducted on the adsorbent dosage and pH effect, adsorption kinetics, isotherms, and thermodynamics. The most efficient dosage was 1.5 g L-1, and the pH was 5.5. The kinetic study showed that the equilibrium was reached in 60 min and the pseudo-second-order model presents the best fit. After the temperature influence study (25, 35, 45, and 55 °C), it was possible to verify that Cu(II) adsorption through char was favored at 55 °C. The Freundlich model showed the best fit for the experimental data. The highest removal percentage was 96.56%, and the high maximum adsorption capacity was 42 mg g-1. The thermodynamic study shows the adsorption as a spontaneous process, favorable, and endothermic. Supplementary Information: The online version contains supplementary material available at 10.1007/s13399-022-02792-8.

7.
Chemosphere ; 301: 134661, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35452647

ABSTRACT

High amounts of phosphogypsum (PG) are generated in the production of phosphoric acid. Previous literature demonstrates that obtaining rare earth elements (REE) from PG is a promising alternative to managing this waste. However, the reported leaching efficiencies are low in most cases, or drastic leaching conditions are required. Therefore, this work aimed to study the leaching conditions of REE from PG to obtain high leaching efficiency values. Initially, a 24 factorial experimental design investigated the factors that affect the conventional acid leaching of REE from PG (leaching acid (citric and sulfuric acid), solid/liquid ratio, acid concentration, and temperature). Better leaching efficiency values of the sum of all REE (62.0% and 89.7% for citric and sulfuric acid, respectively) were obtained using an acid concentration of 3 mol L-1, solid/liquid ratio of 1/20 g mL-1, and temperature of 80 °C. Subsequently, the experiments optimization, performed through a central composite rotational design, indicated that the maximum leaching efficiency was achieved using a sulfuric acid concentration of 2.9 mol L-1, solid/liquid ratio of 1.7/20 g mL-1, and 55 °C. Under these conditions, the leaching efficiency of the sum of all REE was 90.0%. Leaching kinetics results showed that the equilibrium was reached in about 20 min for most REE. The mechanism investigation suggested that surface chemical reaction and diffusion through the boundary layer controlled the leaching.


Subject(s)
Metals, Rare Earth , Acids , Calcium Sulfate , Phosphorus , Temperature
8.
Waste Manag ; 113: 96-104, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32526638

ABSTRACT

Pyrolysis of malt bagasse was carried out to obtain simultaneously a mesoporous biochar and an oil fraction rich in palmitic acid. The best result for biochar production was at 500 °C with holding time of 10 min. The yields of biochar and pyrolytic oil in this condition were, 29.7 and 33.9 wt%, respectively. The pyrolysis temperature and holding time influenced the yields of the products. An increase in pyrolysis temperature (from 500 to 700 °C) and holding time (from 10 to 50 min) caused a decrease in biochar yield, a reduction in the volatile matter content and an increase in the amount of ash. Additionally, in the range studied in this work, the increase of the pyrolysis temperature caused a decrease in the specific surface area and total pore volume of the biochar. Meanwhile, the biochar presented interesting functional groups and a mesoporous character, which can be a precursor to obtain adsorbents, or even, be used as adsorbent. The pyrolytic oil was composed of oxygenated aromatic compounds, the main fraction being palmitic acid (27.3%), which can be used in a number of applications, including biodiesel production. This work demonstrated that an available and problematic waste, malt bagasse, can be converted simultaneously into a mesoporous biochar and, into a pyrolytic oil rich in palmitic acid. Biochar and pyrolytic oil, in turn, are products of great value and can be applied in several fields.


Subject(s)
Industrial Waste , Pyrolysis , Charcoal , Hot Temperature , Palmitic Acid
9.
Chemosphere ; 256: 127138, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32450348

ABSTRACT

The present work investigates hazardous elements and nanomineralogical assemblages of phosphogypsum waste from an abandoned phosphate fertilizer industry located in Santa Catarina state (Brazil). Correlations between the chemical composition, nanominerals, and ultrafine particles are discussed. Multifaceted physical-geochemical study provided a careful understanding of the nanomineralogical assemblage of the phosphogypsum waste. The electron beam investigation revealed the presence of many hazardous elements in the ultrafine particles. Cr, Pb, Mn, Se, Sr, and Zr, among others, were found in individual ultrafine particles and nanominerals in all studied samples. Besides that, rare earth elements were found in different concentration ranges, being Ce, La, and Nd, the rare earth elements, found in the higher concentrations, above 900 mg kg-1. The data supplied by this article are important to characterize the phosphogypsum waste, assessing the potential hazard to the environment and human health, and also, provides information to enable the designing of alternatives to manage this waste.


Subject(s)
Calcium Sulfate/chemistry , Environmental Monitoring , Fertilizers/analysis , Metals, Heavy/analysis , Metals, Rare Earth/analysis , Phosphorus/chemistry , Brazil , Humans , Particulate Matter/analysis , Phosphates/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...